

BEECHCRAFT

I. INTRODUCTION

- a. In 1936 the first serious accident to Beechcraft Airplanes (17 Series) occurred which indicated that the structure was not entirely airworthy. Subsequent accidents caused the facilities of the Civil Aeronautics Administration, National Advisory Committee for Aeronautics, and the Material Division of the Army Air Corps to be combined to solve these problems.
- b. Tests on the subject (17 series biplanes) aircraft were made independently, and at different times. These data were then compared, discrepancies discussed, and final conclusions obtained.

II. BEECHCRAFT ACCIDENTS

- a. It was considered wise to present a brief resume of the accidents to Beechcraft (17 series) Biplanes to clarify events which preceded the rather exhaustive flutter investigation.
 - 1. Beechcraft B17R, Serial No. 68, NC 28ly. This accident occurred at Dunlo, Pennsylvania on April 19, 1936. Fred Harvey and his wife were fatally injured. This airplane lost pieces of fabric, plywood, wing ribs, fairing, wing leading edge, and all of its wing tips. These parts of the structure were found scattered over approximately a 2 1/2 mile distance behind the wreckage. Icing conditions were reported (unofficially) very bad at the time of the accident. The pilot was probably forced to fly on instruments, and it was considered possible that the airplane had gotten away from him, and he had reached a fairly high speed.

- 2. Beechcraft B17L, Serial No. 41, NC 15403, at Louen, Mississippi, on June 19, 1938; fatal accident involved the pilot only. The pilot was flying through a severe storm; he was probably on instruments and a novice. This airplane lost the vertical fin, all the ailerons, and all the wing tips from the strut-point outboard. It was apparently in a high speed dive at the time it disintegrated. The wings remained on the ship, though the fabric was torn off.
- 3. Beechcraft B17R, Serial No. 119, NC 17008, at Farnhaven, Mississippi, November 12, 1939. Evidence shows that the pilot obtained excessive speed. The airplane lost both left wings, and dove into the ground, rotating slowly. Bad flying weather with overcast was reported, and the pilot was probably flying on instruments.
- 4. Beechcraft D17S, Serial No. 234. This accident occurred in India in 1939. The plane was flying in turbulent air and disintegrated completely; scattering wing parts over a large area.
- 5. Beechcraft F17D, Serial No. 309, NC 293y, Wichita, Kansas, about August 30, 1939. The second test pilot at Beechcraft Factory was flying this airplane at the time of the accident, and was killed. This airplane was new, and had only about four or five hours flying time. The pilot was performing acrobatics, to some extent, while putting on the usual seven to ten hours service time on the airplane prior to its delivery. The pilot came out of a long dive with considerable speed, and levelled off at about 5000 feet altitude. The plane disintegrated completely, and wing parts were scattered over a large area. The air was reported somewhat gusty at the time.
- 6. Beechcraft F17D, Serial No. 244, NC 19472, at Blacksburg, South Carolina, during May 1940. This accident resulted in the death of the pilot. The airplane disintegrated completely in air under similar circumstances as those reported in paragraphs 4 and 5 above.
- 7. Beechcraft F17D, Serial No. 330, NC 2863, Jamestown Airport, Jamestown, New York. The pilot with four passengers, was approaching Jamestown Airport at an indicated airspeed of about 185 m.p.h. in approximately a 45 degree bank. The wheels were retracted, and the throttle was back against the throttle stop. Air conditions were somewhat bumpy, but not unusually severe.

The pilot had just started to open the throttle when the ailerons and wings began to flutter. The ailerons appeared to move throughout their full travel. while the wings vibrated vertically, at the tips with an amplitude of approximately six inches. This wing motion was also combined with a fore and aft motion. From the ground the aileron flutter was noticeable first: followed by wing flutter. This motion continued about two seconds, at which time the airplane became heavy in the nose and left wing. The pilot then pulled the throttle back again and found it necessary to pull the control column well back to make the airplane climb and loose speed. From the time the airplane became nose heavy the flutter lasted nearly one minute; diminishing as the speed was reduced until it finally stopped. In spite of extensive wing structural failure the aircraft was able to continue in flight, and subsequently made a safe landing at Jamestown Airport.

III. TEST DATA

a. Four models of the Beechcraft 17 series of biplanes were tested. They are most conveniently identified as follows:

Beech- craft	Placard Never	Design Diving	Design Level	Gross Wt.	Power Take-off	Iden.
Model	Exceed Speed (MPH)	Speed (Vg) (MPH)	Flight Speed (V_L) (MPH)	(Pounds)	H.P.	No.
C17R D17S E17B F17D	225 256 222 222	250 284 247 284	206 211 183 189	3900 4200 3550 3550	420 450 285 330	NC 2 GB 1 NC 91

- b. These four Beechcraft models are similar in general construction, arrangement, and dimensions; i.e., span, chord, gap, decalage, etc.. However, certain differences exist in control surface arrangements, dynamic balance, spar sizes, rib spacing, and tail bracing that might be expected to influence the vibration characteristics.
- c. The possibly dangerous wing cellule natural* frequencies and modes of oscillation for the Beechcraft (17 series) biplanes

are presented in Table 2.

Complete data of natural frequencies and modes of oscillation are contained in TABLE 3.

*Complete data on natural frequencies and modes of Beechcraft Model F17D are contained in a letter from N.A.C.A. - Flutter of Beechcraft Biplanes, dated 6-20-40; filed in special accident files (622.0000) CAA, Washington office.

Complete tables of natural frequencies and modes of Beechcraft (C17R, D17S, E17B) Airplanes are contained in a report by the War Department, Air Corps, Material Division, Serial No. EXP.-M-51/C300-4, dated 7-19-40. This report is filed with the CAA (Washington office) in the Technical Files, Flutter Data, file No. 612.0410.

TABLE 2

Dangerous Modes & Frequencies of Beechcraft (17 series) Biplanes

Part			Frequencies			
Tested	Mode of Vibration	C17R	D178	E17B	F17D	
	Combined Bending & Torsion of Entire Cellule	800	800	820-840		
	Maximum Bending & Torsion of Lower Wing	1360	1220	1200-1300		
Wing	Maximum Bending & Torsion of Upper Wing	1100	1350	1150		
	First Unsymmetrical Torsion of Whole Cellule				800	
	First Symmetrical Bending of Whole Cellule				800	
	First Symmetrical Torsion of Whole Cellule				1320	
Ailerons	Symmetrical Oscillations About Hng. Line		850-900	900-1000		
	Aileron Against Controls				1100	
Flaps	Torsion of Flap Against Control System		1060	1020		
	Local Torsion in Flap				1100	
		AIR CORPS REPORT		N.A.C.A.		
			-M-51/C300-1		Report	

MASS BALANCE

The static balance of the ailerons and flaps was checked experimentally for the Models E17B, NC 91 and D17S, GBl. The results are as follows:

	Model 1	E17B	Model D17S	
	R.H. Aileron	R.H. Flap	R.H. Aileron	R.H. Flap
Wt. In Pounds	15.4	11.2	16.5	12.0
Static Unbalancin inch pounds	e 1.6	18.5	7.4	21.0

IV. ANALYSIS OF TEST DATA

- a. Inspection of the test data will disclose that basic frequencies are similar, and that a mutual analysis will predict closely the critical flutter speeds of all four models.
- b. Using the statistical method of Kussner as an approximate criterion of the magnitude of the flutter speed in a wing bending vs. torsion mode, the wing critical flutter speeds are as follows:

ASSUMED DANGEROUS FREQ.	CALCULATED FLUTTER SPEED
*800 C.P.M.	123 М.Р.Н.
1200	185
1300	212

ANALYSIS MADE BY CAA, NACA, AIR CORPS

*The 123 M.P.H. critical speed, based on the lowest frequency of 800 C.P.M., was not considered a "dangerous mode" was in the region of 1200 to 1300 C.P.M., <u>due to large amplitudes</u>.

V. CONCLUSIONS (AIR CORPS)

- a. The torsional natural frequencies of the wings of the subject aircraft are low enough to permit flutter in a wing bending vs. torsion mode at speeds below the limit diving speed.
- b. The differences in the wing torsional natural frequencies of the various models are not great enough to cause any appreciable difference in the wing bending vs. torsion flutter speeds.
- c. Since the natural frequencies of both the ailerons and flaps (850-1100 C.P.M.) are only slightly below the frequencies of the wings in bending and torsion (1100-1300 C.P.M.), and in addition are not dynamically balanced with respect to these wing bending and torsion modes, large responses of the flaps and ailerons may occur which will act to reduce the critical flutter speeds estimated on a basis of wing bending vs. torsion alone.

EFFECTIVE REMEDIAL MEASURES FOR FLUTTER PREVENTION

- I. Beechcraft B17 and C17 Models
 - A. Balance the ailerons
 - 1. Lead should be placed in the aileron as shown in figure 1.

For complete instructions concerning Models B17 and C17 aileron mass balance, notice "Beechcraft Service Bulletin No. 76."

- II. Beechcraft D17 Model
 - A. Increase torsional stiffness of wing tip section (figure 2)
 - 1. For details notice "Beechcraft Service Bulletin No. 75."
 - B. Balance the ailerons (figure 3).
 - C. Balance the flaps (figure 4).
- III. Beechcraft El7 and Fl7 Models

Identical with II above. For details see Beechcraft Service Bulletin No. 74.

- VI. DETERMINATION OF BEECHCRAFT c_{TR} VALUES OF WING CELLULE (BEECHCRAFT & CAA)
 - A. PROCEDURE

The method of torsion tests and computations for CTR values of aircraft structure is explained in detail in Civil Aeronautics Manual 04.0000, page .3-8.

- 1. Torsion tests on Beechcraft Models, (F17D and E17B) in general, consist of:
 - a. Torsion tests on the biplane cellule to determine the C_{TR} values for the basic wing, and subsequent tests to determine the effects on C_{TR} of adding 38 3/4 inches plywood covering to the tip portion of the wings. Notice figure 5.

DISCUSSION OF AILERON MASS BALANCE

The results of an investigation of actual aileron mass balance, existant in the subject aircraft at the time of the accidents, are shown in figure 6, and tend to indicate the importance of aileron mass-balance for desirable flutter characteristics.

Figure 6 shows quite clearly that aileron flutter difficulties begin to occur with an aileron underbalance of approximately 5#". No serious flutter difficulties appear to have occurred at a value of $+l_4.0\#$ ". Therefore, the transition point appears to be about 5#".

LINES OF BREAKAGE

Investigation brought out an interesting point and revealed that, when amplitudes are large, lines of breakage are likely to occur adjacent to nodal lines. The lines of failure of a Beechcraft wing cellule are shown on figure 7.

AILERONS

Average weight of 16.9#. The dangerous unbalanced condition appears to be about 5#".

LEFT ELEVATOR

Average weight = 9.77#

Average unbalanced moment = 38.532#"

RIGHT ELEVATOR

Average weight = 7.74#

Average unbalanced moment = 25.451#"

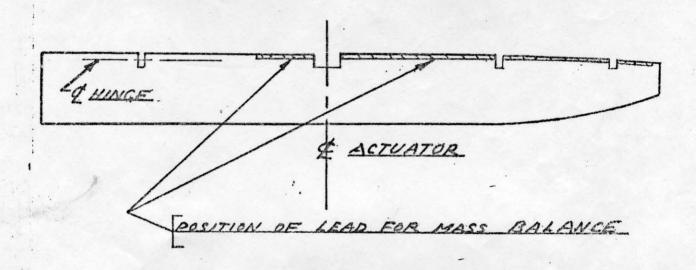
Total average weight = 17.51#

Total unbalanced moment = 63.983#"

RUDDER

Gross weight of rudder with tab. = 8.46

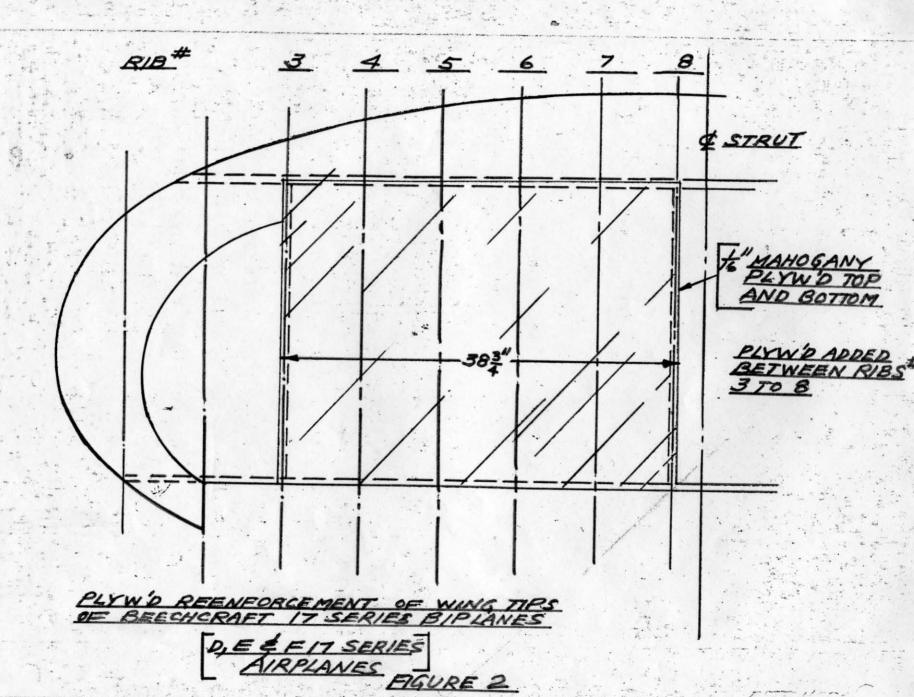
Unbalanced moment = 43.073#"

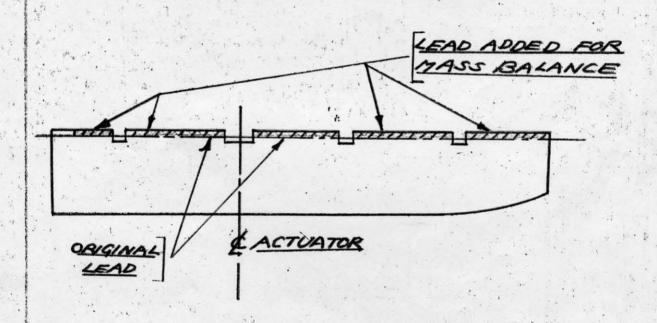

TABLE 3

*Modes & Freq. of Beechcraft (17 series) Airplanes

Part			Frequencies			
Tested		F17D	E17B	D17S	<u>C17R</u>	
	First Unsymmetrical Torsion of Whole Cellule	800				
	First Symmetrical Bending of Whole Cellule	800				
	First Symmetrical Torsion of Whole Cellule	1320				
	Local Bending					
	Lower Wing	1300				
	Upper Wing	1100				
Wing	Entire Cellule Moving in Torsion		820-840	800	800	
	Max. Response at Lower Wing Tip		1260	1220		
	Max. Torsional Response of Upper & Lower Wings				1380	
	Max. Response to Upper Wing		1150	1550		
	Peak of Torsional Response				1100	
	Ailerons Oscillating Symmetrically		900-1000	850-900	Not Tested	
Ailerons	Torsional Oscillations of Aileron		1650	1850		
	Aileron Against Controls	1100				
	Local Torsion in Aileron	1800				
	Flap in Torsion Against Control System		1080	1060		
Flaps	Local Torsion in Flap	1100				
Eng. Mt.	Engine Mount Rocking	830				
Fuselage	Fuselage Oscillating in Torsion		580	540		
Stab.	Stabilizer Bending Symmetrically		1000-1300	1020		
	Elev. Move Symmetrically About Hng. Line		370	400		
Elev.	Elev. Oscillating Unsymmetrically About Hng.		1000-1200	980		
Fin	Fin Bending		1290	1200		
Rudder	Rudder Oscillating About Hng. Line		200-400	380-450		

^{*}NOTICE AIR CORPS REPORT SERIAL NO. EXP. M 51/c300-4


BIT & CIT ALERONS


THE AMOUNT OF LEAD TO BE ADDED IS

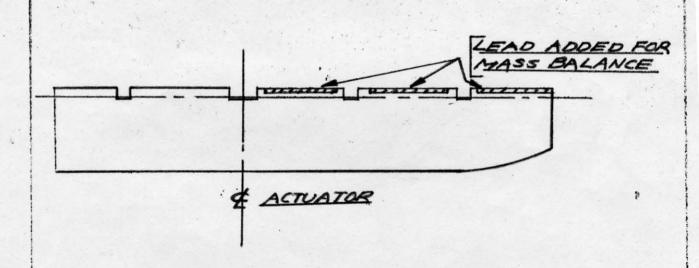
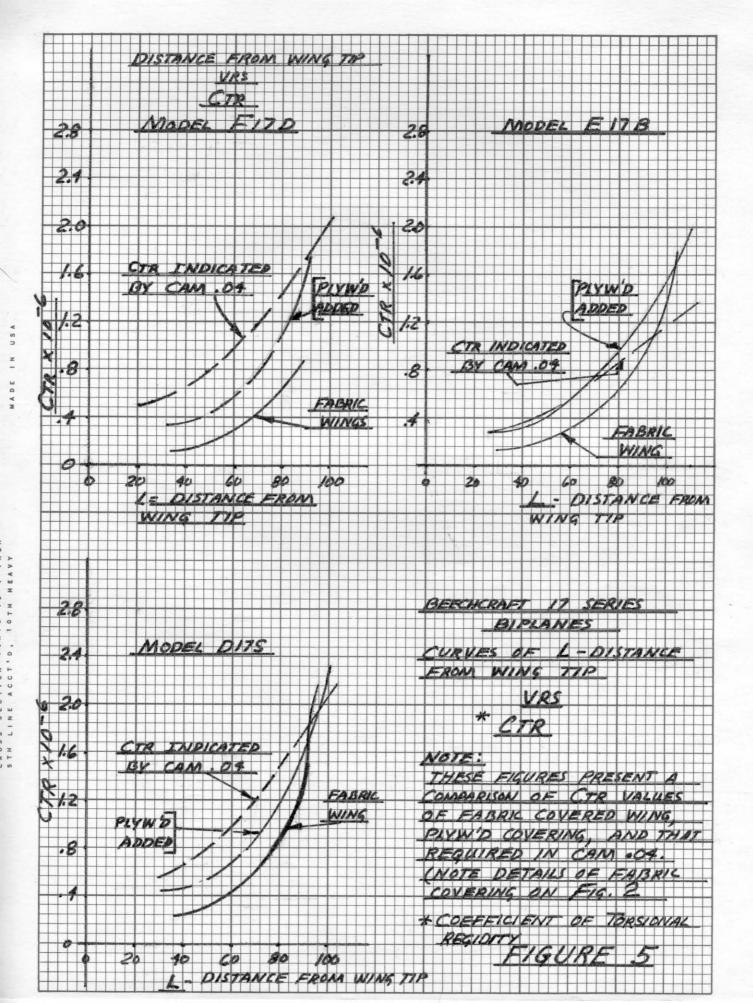
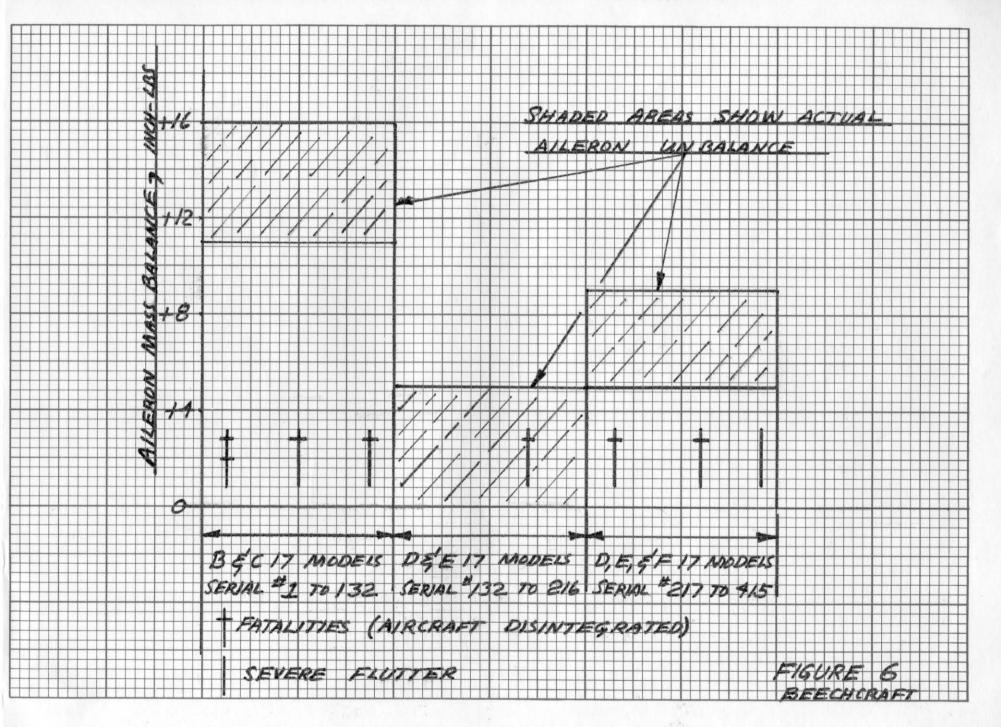
DETERMINED BY THE ORIGINAL RALANCING
CONDITION OF THE ALLERON. SUFFICIENT
LEAD MUST BE ADDED TO AT LEAST COMPLETELLY STATICALLY IT. A LITTLE OVER
BALANCE IS PERMISSABLE, BUT NO
UNDERBALANCE.

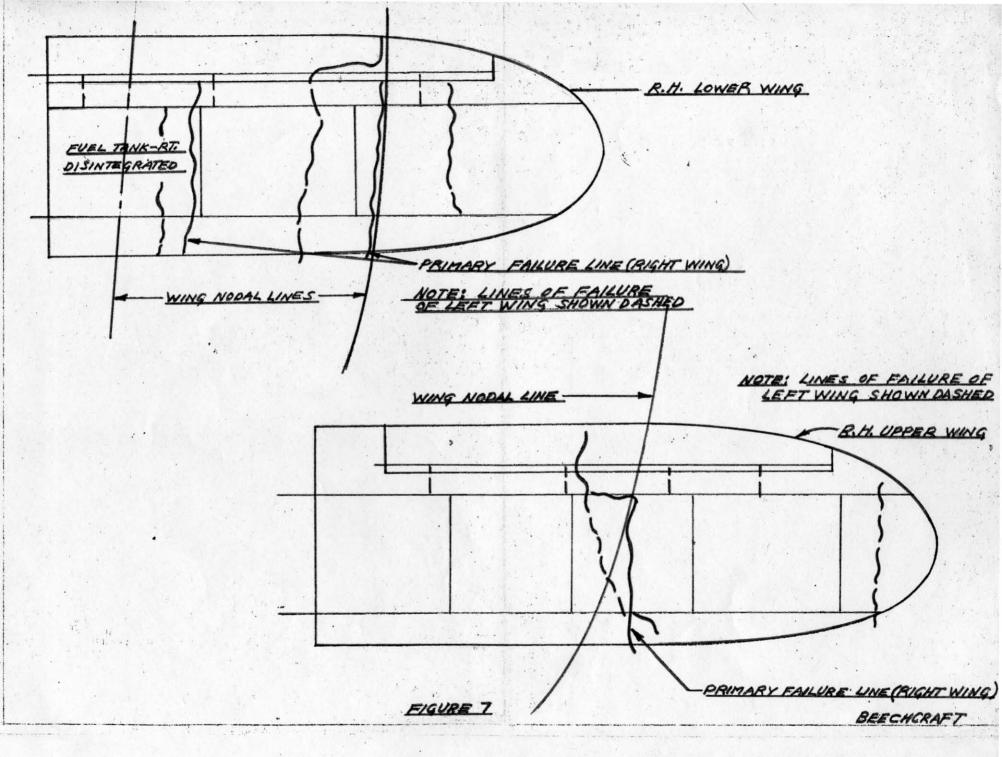
EIGURE 1

MASS BALANCE OF D, E & F 17 AILERONS

EIGURE 3

DE & FIT FLAPS


FIGURE 4

of traballiness and selection between the second

BEECHCRAFT

